0:00
/
0:00
Transcript

Example 7: Using Computers (GeoGebra) to Draw Space Curves

The twisted cubic is just the intersection curve between a parabolic and cubic cylinder!

YouTube - Summary - Notes - Playlist - Vector Functions playlist

In this video I graph out several complicated space curves using GeoGebra's amazing 3D graphing calculator. These curves are the toroidal spiral, trefoil knot, and a twisted cubic. I illustrate the importance of perspective when viewing these three dimensional curves, by graphing the projections along each major coordinate plane. I also show that we can better visualize space curves by graphing them on 3D surfaces. For example, the twisted cubic is just the intersection curve between a parabolic and cubic cylinder!

#math #3D #spacecurves #GeoGebra #calculator

Timestamps

  • Example 7: Space curves are more difficult to draw than plane curves: 0:00

  • Toroidal spiral: 0:31

  • Trefoil knot: 1:06

  • Graphing the Trefoil knot and Toroidal spiral in GeoGebra: https://www.geogebra.org/calculator/gyfv87f2 1:33

  • Example 7: Twisted Cubic: 3:13

  • Visualizing Space Curves on Surfaces: 8:37

    • Twisted cubic on a parabolic cylinder: 9:46

    • Graphing Twisted Cubic on the intersection of two cylinders in GeoGebra: 11:18

MES Links

Donate to MES

Discussion about this video